Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cell Commun Signal ; 21(1): 245, 2023 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-37730576

RESUMEN

BACKGROUND: Several studies show that natural foods are a source of compounds with anticancer properties that affect the gut microbiota and its metabolites. In the present study, we investigate the effect of a delactosed buffalo milk whey by-product (DMW) on colorectal carcinogenesis. METHODS: The effect of DMW on colorectal carcinoma (CRC) was investigated in the established mouse model of azoxymethane (AOM)-induced colon carcinoma, which closely resembles the human clinical condition of CRC. The effect of DMW on CRC immortalized cell lines was also evaluated to further identify the antineoplastic mechanism of action. RESULTS: Pretreatment of AOM-treated mice with DMW significantly (P < 0.05) reduced the percentage of mice bearing both aberrant crypt foci with more than four crypts (which are early precancerous lesions that progress to CRC) and tumors. In addition, DMW completely counteracted the effect of AOM on protein expression of caspase-9, cleaved caspase-3 and poly ADP-ribose polymerase in colonic tissue. Administration of DMW alone (i.e. without AOM) resulted in changes in the composition of the gut microbiota, leading to enrichment or depletion of genera associated with health and disease, respectively. DMW was also able to restore AOM-induced changes in specific genera of the gut microbiota. Specifically, DMW reduced the genera Atopobiaceae, Ruminococcus 1 and Lachnospiraceae XPB1014 and increased the genera Parabacteroides and Candidatus Saccharimonas, which were increased and reduced, respectively, by AOM. Blood levels of butyric acid and cancer diagnostic markers (5-methylcytidine and glycerophosphocholine), which were increased by AOM treatment, were reduced by DMW. Furthermore, DMW exerted cytotoxic effects on two human CRC cell lines (HCT116 and HT29) and these effects were associated with the induction of apoptotic signaling. CONCLUSIONS: Our results suggest that DMW exerts chemopreventive effects and restores the gut microbiota in AOM-induced CRC, and induces cytotoxic effect on CRC cells. DMW could be an important dietary supplement to support a healthy gut microbiota and reduce the prevalence of CRC in humans. Video Abstract.


Asunto(s)
Neoplasias Colorrectales , Suero Lácteo , Humanos , Animales , Ratones , Búfalos , Leche , Carcinogénesis , Neoplasias Colorrectales/tratamiento farmacológico , Azoximetano/toxicidad , Ácido Butírico
2.
Microorganisms ; 11(8)2023 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-37630538

RESUMEN

A total of thirty-two aerobic spore former strains were isolated from intestinal samples of healthy children and analyzed for their hemolytic and antibiotic-resistant activities. Four strains selected as non-hemolytic and sensitive to all antibiotics recommended as relevant by regulatory agencies were short-listed and evaluated for their in silico and in vitro probiotic potentials. The four selected strains were assigned to the Bacillus velezensis (MV4 and MV11), B. subtilis (MV24), and Priestia megaterium (formerly Bacillus megaterium) (MV30) species. A genomic analysis indicated that MV4, MV11, and MV24 contained a homolog of the gene coding for the fibrinolytic enzyme nattokinase while only MV30 encoded a glutamic acid decarboxylase essential to synthesize the neurotransmitter GABA. All four strains contained gene clusters potentially coding for new antimicrobials, showed strong antioxidant activity, formed biofilm, and produced/secreted quorum-sensing peptides able to induce a cytoprotective stress response in a model of human intestinal (HT-29) cells. Altogether, genomic and physiological data indicate that the analyzed strains do not pose safety concerns and have in vitro probiotic potentials allowing us to propose their use as an alternative to antibiotics.

3.
Int J Mol Sci ; 24(13)2023 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-37446054

RESUMEN

The development of efficient mucosal vaccines is strongly dependent on the use of appropriate vectors. Various biological systems or synthetic nanoparticles have been proposed to display and deliver antigens to mucosal surfaces. The Bacillus spore, a metabolically quiescent and extremely resistant cell, has also been proposed as a mucosal vaccine delivery system and shown able to conjugate the advantages of live and synthetic systems. Several antigens have been displayed on the spore by either recombinant or non-recombinant approaches, and antigen-specific immune responses have been observed in animals immunized by the oral or nasal route. Here we review the use of the bacterial spore as a mucosal vaccine vehicle focusing on the advantages and drawbacks of using the spore and of the recombinant vs. non-recombinant approach to display antigens on the spore surface. An overview of the immune responses induced by antigen-displaying spores so far tested in animals is presented and discussed.


Asunto(s)
Bacillus , Vacunas , Animales , Esporas Bacterianas/metabolismo , Bacillus subtilis/metabolismo , Vacunas/metabolismo , Sistemas de Liberación de Medicamentos , Bacillus/metabolismo , Antígenos/metabolismo , Proteínas Bacterianas/metabolismo
4.
Res Microbiol ; 174(6): 104030, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36738815

RESUMEN

Bacteria classified as Bacillus cereus sensu stricto cause two different type of gastrointestinal diseases associated with food poisoning. Outbreaks of this opportunistic pathogen are generally due to the resistance of its spores to heat, pH and desiccation that makes hard their complete inactivation from food products. B. cereus is commonly isolated from a variety of environments, including intestinal samples of infected and healthy people. We report the genomic and physiological characterization of MV19, a human intestinal strain closely related (ANI value of 98.81%) to the reference strain B. cereus ATCC 14579. MV19 cells were able to grow in a range of temperatures between 20 and 44 °C. At the optimal temperature the sporulation process was rapidly induced and mature spores efficiently released, however these appeared structurally and morphologically defective. At the sub-optimal growth temperature of 25 °C sporulation was slow and less efficient but a high total number of fully functional spores was produced. These results indicate that the reduced rapidity and efficiency of sporulation at 25 °C are compensated by a high quality and quantity of released spores, suggesting the relevance of different performances at different growth conditions for the adaptation of this bacterium to diverse environmental niches.


Asunto(s)
Bacillus cereus , Esporas Bacterianas , Humanos , Esporas Bacterianas/genética , Temperatura , Calor
5.
Anim Microbiome ; 5(1): 14, 2023 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-36823657

RESUMEN

BACKGROUND: Wild boar has experienced several evolutionary trajectories from which domestic (under artificial selection) and the feral pig (under natural selection) originated. Strong adaptation deeply affects feral population's morphology and physiology, including the microbiota community. The gut microbiota is generally recognized to play a crucial role in maintaining host health and metabolism. To date, it is unclear whether feral populations' phylogeny, development stages or lifestyle have the greatest impact in shaping the gut microbiota, as well as how this can confer adaptability to new environments. Here, in order to deepen this point, we characterized the gut microbiota of feral population discriminating between juvenile and adult samples, and we compared it to the microbiota structure of wild boar and domestic pig as the references. Gut microbiota composition was estimated through the sequencing of the partial 16S rRNA gene by DNA metabarcoding and High Throughput Sequencing on DNA extracted from fecal samples. RESULTS: The comparison of microbiota communities among the three forms showed significant differences. The feral form seems to carry some bacteria of both domestic pigs, derived from its ancestral condition, and wild boars, probably as a sign of a recent re-adaptation strategy to the natural environment. In addition, interestingly, feral pigs show some exclusive bacterial taxa, also suggesting an innovative nature of the evolutionary trajectories and an ecological segregation in feral populations, as already observed for other traits. CONCLUSIONS: The feral pig showed a significant change between juvenile and adult microbiota suggesting an influence of the wild environment in which these populations segregate. However, it is important to underline that we certainly cannot overlook that these variations in the structure of the microbiota also depended on the different development stages of the animal, which in fact influence the composition of the intestinal microbiota. Concluding, the feral pigs represent a new actor living in the same geographical space as the wild boars, in which its gut microbial structure suggests that it is mainly the result of environmental segregation, most different from its closest relative. This gives rise to interesting fields of exploration regarding the changed ecological complexity and the consequent evolutionary destiny of the animal communities involved in this phenomenon.

6.
J Nutr Biochem ; 113: 109247, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36496062

RESUMEN

To investigate whether short term fructose-rich diet induces changes in the gut microbiota as well as in skeletal muscle and adipose tissue physiology and verify whether they persist even after fructose withdrawal, young rats of 30 d of age were fed for 3 weeks a fructose-rich or control diet. At the end of the 3-weeks period, half of the rats from each group were maintained for further 3 weeks on a control diet. Metagenomic analysis of gut microbiota and short chain fatty acids levels (faeces and plasma) were investigated. Insulin response was evaluated at the whole-body level and both in skeletal muscle and epididymal adipose tissue, together with skeletal muscle mitochondrial function, oxidative stress, and lipid composition. In parallel, morphology and physiological status of epididymal adipose tissue was also evaluated. Reshaping of gut microbiota and increased content of short chain fatty acids was elicited by the fructose diet and abolished by switching back to control diet. On the other hand, most metabolic changes elicited by fructose-rich diet in skeletal muscle and epididymal adipose tissue persisted after switching to control diet. Increased dietary fructose intake even on a short-time basis elicits persistent changes in the physiology of metabolically relevant tissues, such as adipose tissue and skeletal muscle, through mechanisms that go well beyond the reshaping of gut microbiota. This picture delineates a harmful situation, in particular for the young populations, posed at risk of metabolic modifications that may persist in their adulthood.


Asunto(s)
Microbioma Gastrointestinal , Resistencia a la Insulina , Ratas , Animales , Fructosa/efectos adversos , Fructosa/metabolismo , Dieta , Tejido Adiposo/metabolismo , Insulina/metabolismo , Hipertrofia/metabolismo , Músculo Esquelético/metabolismo
7.
Int J Mol Sci ; 23(23)2022 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-36499272

RESUMEN

Spore formers are ubiquitous microorganisms commonly isolated from most environments, including the gastro-intestinal tract (GIT) of insects and animals. Spores ingested as food and water contaminants safely transit the stomach and reach the intestine, where some of them germinate and temporarily colonize that niche. In the lower part of the GIT, they re-sporulate and leave the body as spores, therefore passing through their entire life cycle in the animal body. In the intestine, both un-germinated spores and germination-derived cells interact with intestinal and immune cells and have health-beneficial effects, which include the production of useful compounds, protection against pathogenic microorganisms, contribution to the development of an efficient immune system and modulation of the gut microbial composition. We report a genomic and physiological characterization of SF106 and SF174, two aerobic spore former strains previously isolated from ileal biopsies of healthy human volunteers. SF106 and SF174 belong respectively to the B. subtilis and Alkalihalobacillus clausii (formerly Bacillus clausii) species, are unable to produce toxins or other metabolites with cytotoxic activity against cultured human cells, efficiently bind mucin and human epithelial cells in vitro and produce molecules with antimicrobial and antibiofilm activities.


Asunto(s)
Tracto Gastrointestinal , Esporas Bacterianas , Animales , Humanos , Esporas Bacterianas/fisiología , Intestinos , Íleon , Estómago , Bacillus subtilis/fisiología
8.
Sci Rep ; 12(1): 20248, 2022 11 24.
Artículo en Inglés | MEDLINE | ID: mdl-36424419

RESUMEN

The gut microbiota exerts a variety of positive effects on the intestinal homeostasis, including the production of beneficial molecules, control of the epithelial barrier integrity and the regulation of the balance between host's cell death and proliferation. The interactions between commensal bacteria and intestinal cells are still under-investigated and is then of paramount importance to address such interactions at the molecular and cellular levels. We report an in vitro analysis of the effects of molecules secreted by Lactobacillus gasseri SF1183 on HCT116 cells, selected as a model of intestinal epithelial cells. SF1183 is a L. gasseri strain isolated from an ileal biopsy of a human healthy volunteer, able to prevent colitis symptoms in vivo. Expanding previous findings, we show that bioactive molecules secreted by SF1183 reduce the proliferation of HCT116 cells in a reversible manner determining a variation in cell cycle markers (p21WAF, p53, cyclin D1) and resulting in the protection of HCT116 cells from TNF-alfa induced apoptosis, an effect potentially relevant for the protection of the epithelial barrier integrity and reconstitution of tissue homeostasis. Consistently, SF1183 secreted molecules increase the recruitment of occludin, a major component of TJ, at the cell-cell contacts, suggesting a reinforcement of the barrier function.


Asunto(s)
Lactobacillus gasseri , Humanos , Intestinos , Proliferación Celular , Apoptosis , Células Epiteliales/metabolismo
9.
mBio ; 13(6): e0276022, 2022 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-36354330

RESUMEN

Proteins and glycoproteins that form the surface layers of the Bacillus spore assemble into semipermeable arrays that surround and protect the spore cytoplasm. Such layers, acting like molecular sieves, exclude large molecules but allow small nutrients (germinants) to penetrate. We report that CotG, a modular and abundant component of the Bacillus subtilis spore coat, controls spore permeability through its central region, formed by positively charged tandem repeats. These repeats act as spacers between the N and C termini of the protein, which are responsible for the interaction of CotG with at least one other coat protein. The deletion but not the replacement of the central repeats with differently charged repeats affects the spore resistance to lysozyme and the efficiency of germination-probably by reducing the coat permeability to external molecules. The presence of central repeats is a common feature of the CotG-like proteins present in most Bacillus species, and such a wide distribution of this protein family is suggestive of a relevant role for the structure and function of the Bacillus spore. IMPORTANCE Bacterial spores are quiescent cells extremely resistant to a variety of unphysiological conditions, including the presence of lytic enzymes. Such resistance is also due to the limited permeability of the spore surface, which does not allow lytic enzymes to reach the spore interior. This article proposes that the spore permeability in B. subtilis is mediated by CotG, a modular protein formed by a central region of repeats of positively charged amino acid acting as a "spacer" between the N and C termini. These, in turn, interact with other coat proteins, generating a protein layer whose permeability to external molecules is controlled by the distance between the N and C termini of CotG. This working model is most likely expandable to most sporeformers of the Bacillus genus, since they all have CotG-like proteins, not homologous to CotG of B. subtilis but similarly characterized by central repeats.


Asunto(s)
Bacillus subtilis , Bacillus , Bacillus subtilis/metabolismo , Proteínas Bacterianas/metabolismo , Bacillus/metabolismo , Esporas Bacterianas/metabolismo , Permeabilidad
10.
Sci Rep ; 12(1): 12682, 2022 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-35879521

RESUMEN

Animals living on small islands are more drastically exposed to environmental changes, such as food or water starvation, and rapid temperature shifts. Facing such conditions, and probably thank to adaptive plasticity mechanisms, some animals display a Reversed Island Syndrome (RIS), a suite of traits, including skin pigmentation, voracity, sexual dimorphism, showed differently from mainland relatives. Here, we analyse a so far poorly explored aspect of RIS: the effect of this on the microbiota composition of host Italian wall lizard (Podarcis siculus), strongly influenced by the animal's lifestyle, and conditioning the same. We compare mainland and island populations, assessing the difference between their microbial communities and their response under unexpected food, experimentally provided. Our observations showed a significant difference in microbiota communities between island and mainland groups, depended mainly from changes in relative abundance of the shared genera (difference due to decrease/increase). Exposure to experimental diet regimes resulted into significative reshaping of bacterial composition of microbiota and a greater variation in body mass only in the island population. Our results could be an evidence that gut microbial community contributes to adaptive plasticity mechanisms of island lizards under RIS to efficiently respond to unexpected changes.


Asunto(s)
Microbioma Gastrointestinal , Lagartos , Animales , Bacterias , Lagartos/fisiología , Fenotipo , Temperatura
11.
BMC Microbiol ; 22(1): 3, 2022 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-34979918

RESUMEN

BACKGROUND: Members of the Bacillus genus produce a large variety of antimicrobial peptides including linear or cyclic lipopeptides and thiopeptides, that often have a broad spectrum of action against Gram-positive and Gram-negative bacteria. We have recently reported that SF214, a marine isolated strain of Bacillus pumilus, produces two different antimicrobials specifically active against either Staphylococcus aureus or Listeria monocytogenes. The anti-Staphylococcus molecule has been previously characterized as a pumilacidin, a nonribosomally synthesized lipopetide composed of a mixture of cyclic heptapeptides linked to fatty acids of variable length. RESULTS: Our analysis on the anti-Listeria molecule of B. pumilus SF214 indicated that it is a peptide slightly smaller than 10 kDa, produced during the exponential phase of growth, stable at a wide range of pH conditions and resistant to various chemical treatments. The peptide showed a lytic activity against growing but not resting cells of Listeria monocytogenes and appeared extremely specific being inactive also against L. innocua, a close relative of L. monocytogenes. CONCLUSIONS: These findings indicate that the B. pumilus peptide is unusual with respect to other antimicrobials both for its time of synthesis and secretion and for its strict specificity against L. monocytogenes. Such specificity, together with its stability, propose this new antimicrobial as a tool for potential biotechnological applications in the fight against the dangerous food-borne pathogen L. monocytogenes.


Asunto(s)
Antibacterianos/farmacocinética , Péptidos Antimicrobianos/farmacología , Bacillus pumilus/metabolismo , Listeria monocytogenes/efectos de los fármacos , Antibacterianos/química , Antibacterianos/metabolismo , Péptidos Antimicrobianos/química , Péptidos Antimicrobianos/metabolismo , Bacillus pumilus/genética , Bacillus pumilus/crecimiento & desarrollo , Bacteriólisis/efectos de los fármacos , Pared Celular/efectos de los fármacos , Genoma Bacteriano/genética , Calor , Concentración de Iones de Hidrógeno , Listeria monocytogenes/crecimiento & desarrollo , Peso Molecular , Estabilidad Proteica , Especificidad de la Especie
12.
Mol Ecol ; 31(1): 220-237, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34676935

RESUMEN

Domestication is an intriguing evolutionary process. Many domestic populations are subjected to strong human-mediated selection, and when some individuals return to the wild, they are again subjected to selective forces associated with new environments. Generally, these feral populations evolve into something different from their wild predecessors and their members typically possess a combination of both wild and human selected traits. Feralisation can manifest in different forms on a spectrum from a wild to a domestic phenotype. This depends on how the rewilded domesticated populations can readapt to natural environments based on how much potential and flexibility the ancestral genome retains after its domestication signature. Whether feralisation leads to the evolution of new traits that do not exist in the wild or to convergence with wild forms, however, remains unclear. To address this question, we performed population genomic, olfactory, dietary, and gut microbiota analyses on different populations of Sus scrofa (wild boar, hybrid, feral and several domestic pig breeds). Porcine single nucleotide polymorphisms (SNPs) analysis shows that the feral population represents a cluster distinctly separate from all others. Its members display signatures of past artificial selection, as demonstrated by values of FST in specific regions of the genome and bottleneck signature, such as the number and length of runs of homozygosity. Generalised FST values, reacquired olfactory abilities, diet, and gut microbiota variation show current responses to natural selection. Our results suggest that feral pigs are an independent evolutionary unit which can persist so long as levels of human intervention remain unchanged.


Asunto(s)
Microbioma Gastrointestinal , Animales , Cruzamiento , Dieta/veterinaria , Microbioma Gastrointestinal/genética , Metagenómica , Sus scrofa/genética , Porcinos/genética
13.
Pharmaceutics ; 13(8)2021 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-34452257

RESUMEN

Members of the Bacillus genus, particularly the "Bacillus subtilis group", are known to produce amphipathic lipopeptides with biosurfactant activity. This includes the surfactins, fengycins and iturins that have been associated with antibacterial, antifungal, and anti-viral properties. We have screened a large collection of Bacillus, isolated from human, animal, estuarine water and soil samples and found that the most potent lipopeptide producers are members of the species Bacillus velezensis. B. velezensis lipopeptides exhibited anti-bacterial activity which was localised on the surface of both vegetative cells and spores. Interestingly, lipopeptide micelles (6-10 nm diameter) were detectable in strains exhibiting the highest levels of activity. Micelles were stable (heat and gastric stable) and shown to entrap other antimicrobials produced by the host bacterium (exampled here was the dipeptide antibiotic chlorotetaine). Commercially acquired lipopeptides did not exhibit similar levels of inhibitory activity and we suspect that micelle formation may relate to the particular isomeric forms produced by individual bacteria. Using naturally produced micelle formulations we demonstrated that they could entrap antimicrobial compounds (e.g., clindamycin, vancomycin and resveratrol). Micellar incorporation of antibiotics increased activity. Bacillus is a prolific producer of antimicrobials, and this phenomenon could be exploited naturally to augment antimicrobial activity. From an applied perspective, the ability to readily produce Bacillus micelles and formulate with drugs enables a possible strategy for enhanced drug delivery.

14.
Biotechnol Adv ; 47: 107693, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33387640

RESUMEN

Surface display systems have been developed to express target molecules on almost all types of biological entities from viruses to mammalian cells and on a variety of synthetic particles. Various approaches have been developed to achieve the display of many different target molecules, aiming at several technological and biomedical applications. Screening of libraries, delivery of drugs or antigens, bio-catalysis, sensing of pollutants and bioremediation are commonly considered as fields of potential application for surface display systems. In this review, the non-recombinant approach to display antigens and enzymes on the surface of bacterial spores is discussed. Examples of molecules displayed on the spore surface and their potential applications are summarized and a mechanism of display is proposed.


Asunto(s)
Bacillus subtilis , Proteínas Bacterianas , Adsorción , Animales , Antígenos , Esporas Bacterianas/genética
15.
Microb Cell Fact ; 19(1): 185, 2020 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-33004043

RESUMEN

BACKGROUND: Bacterial spores displaying heterologous antigens or enzymes have long been proposed as mucosal vaccines, functionalized probiotics or biocatalysts. Two main strategies have been developed to display heterologous molecules on the surface of Bacillus subtilis spores: (i) a recombinant approach, based on the construction of a gene fusion between a gene coding for a coat protein (carrier) and DNA coding for the protein to be displayed, and (ii) a non-recombinant approach, based on the spontaneous and stable adsorption of heterologous molecules on the spore surface. Both systems have advantages and drawbacks and the selection of one or the other depends on the protein to be displayed and on the final use of the activated spore. It has been recently shown that B. subtilis builds structurally and functionally different spores when grown at different temperatures; based on this finding B. subtilis spores prepared at 25, 37 or 42 °C were compared for their efficiency in displaying various model proteins by either the recombinant or the non-recombinant approach. RESULTS: Immune- and fluorescence-based assays were used to analyze the display of several model proteins on spores prepared at 25, 37 or 42 °C. Recombinant spores displayed different amounts of the same fusion protein in response to the temperature of spore production. In spores simultaneously displaying two fusion proteins, each of them was differentially displayed at the various temperatures. The display by the non-recombinant approach was only modestly affected by the temperature of spore production, with spores prepared at 37 or 42 °C slightly more efficient than 25 °C spores in adsorbing at least some of the model proteins tested. CONCLUSION: Our results indicate that the temperature of spore production allows control of the display of heterologous proteins on spores and, therefore, that the spore-display strategy can be optimized for the specific final use of the activated spores by selecting the display approach, the carrier protein and the temperature of spore production.


Asunto(s)
Bacillus subtilis/crecimiento & desarrollo , Fragmentos de Péptidos/metabolismo , Proteínas Recombinantes de Fusión/metabolismo , Esporas Bacterianas/crecimiento & desarrollo , Temperatura , Toxina Tetánica/metabolismo , Adsorción , Bacillus subtilis/genética , Proteínas Bacterianas/metabolismo , Proteínas Fluorescentes Verdes/metabolismo , Fragmentos de Péptidos/genética , Proteínas Recombinantes de Fusión/genética , Toxina Tetánica/genética
16.
Int J Mol Sci ; 21(18)2020 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-32933117

RESUMEN

Clostridioides difficile is a Gram-positive, spore-forming bacterium that causes a severe intestinal infection. Spores of this pathogen enter in the human body through the oral route, interact with intestinal epithelial cells and persist in the gut. Once germinated, the vegetative cells colonize the intestine and produce toxins that enhance an immune response that perpetuate the disease. Therefore, spores are major players of the infection and ideal targets for new therapies. In this context, spore surface proteins of C. difficile, are potential antigens for the development of vaccines targeting C. difficile spores. Here, we report that the C-terminal domain of the spore surface protein BclA3, BclA3CTD, was identified as an antigenic epitope, over-produced in Escherichia coli and tested as an immunogen in mice. To increase antigen stability and efficiency, BclA3CTD was also exposed on the surface of B. subtilis spores, a mucosal vaccine delivery system. In the experimental conditions used in this study, free BclA3CTD induced antibody production in mice and attenuated some C. difficile infection symptoms after a challenge with the pathogen, while the spore-displayed antigen resulted less effective. Although dose regimen and immunization routes need to be optimized, our results suggest BclA3CTD as a potentially effective antigen to develop a new vaccination strategy targeting C. difficile spores.


Asunto(s)
Proteínas Bacterianas/inmunología , Clostridioides difficile/inmunología , Enterocolitis Seudomembranosa/inmunología , Inmunoglobulina G/inmunología , Mucosa Nasal/inmunología , Esporas Bacterianas/inmunología , Animales , Antígenos/inmunología , Bacillus subtilis/inmunología , Enterocolitis Seudomembranosa/microbiología , Epítopos/inmunología , Femenino , Inmunización/métodos , Masculino , Ratones , Ratones Endogámicos C57BL , Mucosa Nasal/microbiología , Vacunación/métodos
17.
Mol Microbiol ; 114(6): 934-951, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32592201

RESUMEN

Assembly of the Bacillus subtilis spore coat involves over 80 proteins which self-organize into a basal layer, a lamellar inner coat, a striated electrodense outer coat and a more external crust. CotB is an abundant component of the outer coat. The C-terminal moiety of CotB, SKRB , formed by serine-rich repeats, is polyphosphorylated by the Ser/Thr kinase CotH. We show that another coat protein, CotG, with a central serine-repeat region, SKRG , interacts with the C-terminal moiety of CotB and promotes its phosphorylation by CotH in vivo and in a heterologous system. CotG itself is phosphorylated by CotH but phosphorylation is enhanced in the absence of CotB. Spores of a strain producing an inactive form of CotH, like those formed by a cotG deletion mutant, lack the pattern of electrondense outer coat striations, but retain the crust. In contrast, deletion of the SKRB region, has no major impact on outer coat structure. Thus, phosphorylation of CotG by CotH is a key factor establishing the structure of the outer coat. The presence of the cotB/cotH/cotG cluster in several species closely related to B. subtilis hints at the importance of this protein phosphorylation module in the morphogenesis of the spore surface layers.


Asunto(s)
Bacillus subtilis/fisiología , Proteínas Bacterianas/fisiología , Esporas Bacterianas/fisiología , Secuencia de Aminoácidos , Bacillus subtilis/citología , Pared Celular/genética , Pared Celular/metabolismo , Fosforilación , Eliminación de Secuencia , Esporas Bacterianas/citología
18.
Int J Mol Sci ; 21(4)2020 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-32074955

RESUMEN

Clostridioides difficile, formerly known as Clostridium difficile, is a spore-forming bacterium considered as the most common cause of nosocomial infections in developed countries. The spore of C. difficile is involved in the transmission of the pathogen and in its first interaction with the host; therefore, a therapeutic approach able to control C. difficile spores would improve the clearance of the infection. The C-terminal (CTD) end of BclA2, a spore surface protein of C. difficile responsible of the interaction with the host intestinal cells, was selected as a putative mucosal antigen. The BclA2 fragment, BclA2CTD, was purified and used to nasally immunize mice both as a free protein and after adsorption to the spore of Bacillus subtilis, a well-established mucosal delivery vehicle. While the adsorption to spores increased the in vitro stability of BclA2CTD, in vivo both free and spore-adsorbed BclA2CTD were able to induce a similar, specific humoral immune response in a murine model. Although in the experimental conditions utilized the immune response was not protective, the induction of specific IgG indicates that free or spore-bound BclA2CTD could act as a putative mucosal antigen targeting C. difficile spores.


Asunto(s)
Proteínas Bacterianas/inmunología , Clostridioides difficile/metabolismo , Inmunidad Humoral , Administración Intranasal , Adsorción , Animales , Bacillus subtilis/fisiología , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Células CACO-2 , Clostridioides difficile/patogenicidad , Infecciones por Clostridium/prevención & control , Infecciones por Clostridium/veterinaria , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Dominios Proteicos/inmunología , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Proteínas Recombinantes/inmunología , Esporas Bacterianas/química , Esporas Bacterianas/fisiología
19.
Microb Cell Fact ; 19(1): 42, 2020 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-32075660

RESUMEN

BACKGROUND: Spore-forming bacteria of the Bacillus genus are widely used probiotics known to exert their beneficial effects also through the stimulation of the host immune response. The oral delivery of B. toyonensis spores has been shown to improve the immune response to a parenterally administered viral antigen in mice, suggesting that probiotics may increase the efficiency of systemic vaccines. We used the C fragment of the tetanus toxin (TTFC) as a model antigen to evaluate whether a treatment with B. toyonensis spores affected the immune response to a mucosal antigen. RESULTS: Purified TTFC was given to mice by the nasal route either as a free protein or adsorbed to B. subtilis spores, a mucosal vaccine delivery system proved effective with several antigens, including TTFC. Spore adsorption was extremely efficient and TTFC was shown to be exposed on the spore surface. Spore-adsorbed TTFC was more efficient than the free antigen in inducing an immune response and the probiotic treatment improved the response, increasing the production of TTFC-specific secretory immunoglobin A (sIgA) and causing a faster production of serum IgG. The analysis of the induced cytokines indicated that also the cellular immune response was increased by the probiotic treatment. A 16S RNA-based analysis of the gut microbial composition did not show dramatic differences due to the probiotic treatment. However, the abundance of members of the Ruminiclostridium 6 genus was found to correlate with the increased immune response of animals immunized with the spore-adsorbed antigen and treated with the probiotic. CONCLUSION: Our results indicate that B. toyonensis spores significantly contribute to the humoral and cellular responses elicited by a mucosal immunization with spore-adsorbed TTFC, pointing to the probiotic treatment as an alternative to the use of adjuvants for mucosal vaccinations.


Asunto(s)
Bacillus/inmunología , Inmunidad Mucosa , Probióticos/uso terapéutico , Esporas Bacterianas/inmunología , Toxina Tetánica/administración & dosificación , Administración Intranasal , Animales , Bacillus subtilis/inmunología , Inmunización , Masculino , Ratones , Ratones Endogámicos C57BL
20.
Environ Microbiol ; 22(1): 170-182, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31713316

RESUMEN

Bacterial spores are commonly isolated from a variety of different environments, including extreme habitats. Although it is well established that such ubiquitous distribution reflects the spore resistance properties, it is not clear whether the growing conditions affect the spore structure and function. We used Bacillus subtilis spores of similar age but produced at 25, 37, or 42°C to compare their surface structures and functional properties. Spores produced at the 25°C were more hydrophobic while those produced at 42°C contained more dipicolinic acid, and were more resistant to heat or lysozyme treatments. Electron microscopy analysis showed that while 25°C spores had a coat with a compact outer coat, not tightly attached to the inner coat, 42°C spores had a granular, not compact outer coat, reminiscent of the coat produced at 37°C by mutant spores lacking the protein CotG. Indeed, CotH and a series of CotH-dependent coat proteins including CotG were more abundantly extracted from the coat of 25 or 37°C than 42°C spores. Our data indicated that CotH is a heat-labile protein with a major regulatory role on coat formation when sporulation occurs at low temperatures, suggesting that B. subtilis builds structurally and functionally different spores in response to the external conditions.


Asunto(s)
Bacillus subtilis/fisiología , Esporas Bacterianas/crecimiento & desarrollo , Temperatura , Bacillus subtilis/química , Bacillus subtilis/metabolismo , Bacillus subtilis/ultraestructura , Proteínas Bacterianas/metabolismo , Calor , Interacciones Hidrofóbicas e Hidrofílicas , Muramidasa , Ácidos Picolínicos/análisis , Esporas Bacterianas/química , Esporas Bacterianas/metabolismo , Esporas Bacterianas/ultraestructura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...